

CHALLENGES IN MATERIALS AND PROCESSES FOR NEW APPLICATIONS

Laurent Clavelier
Leti, Executive Vice President, Silicon Technologies

Leti Workshop @ Semicon West | July 10, 2018

CHALLENGES IN MATERIALS AND PROCESSES FOR NEW APPLICATIONS

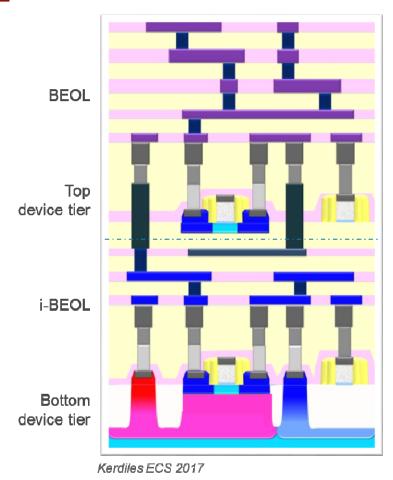
Laurent CLAVELIER

Leti Workshop @ Semicon West | July 10, 2018

Challenges in Materials and Processes for New Applications

2 examples to illustrate the way Leti works:

More Moore: CoolCube


How to do sequential stacking for advanced CMOS with <u>molecular bonding</u> and « <u>low Temperature</u> » process bricks

More Than Moore : Photonics

How to manipulate « exotic materials » <u>like silicon</u> and on <u>large diameter</u> substrates

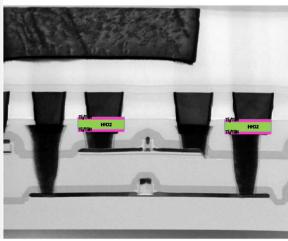
SEQUENTIAL STACKING (COOLCUBE™) INTEGRATION

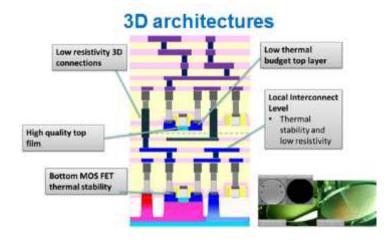
Parallel integration (e.g.: TSV)	Sequential integration
3D TSV contact pitch: 3-8µm 3D contact density: 10 ⁴ -10 ⁵ /mm²	3D contact pitch: < 100 nm 3D contact density: > 10 ⁸ /mm ²
Bonding stepper alignment : ∼1μm	Lithography stepper alignment : ~5 nm

Sequential process:

- Classical CMOS process
- Wafer bonding of a blanket wafer w/o alignement (cold smart cut[™] process for example)
 - Low-temp process (<500℃)
 - 3D contacts

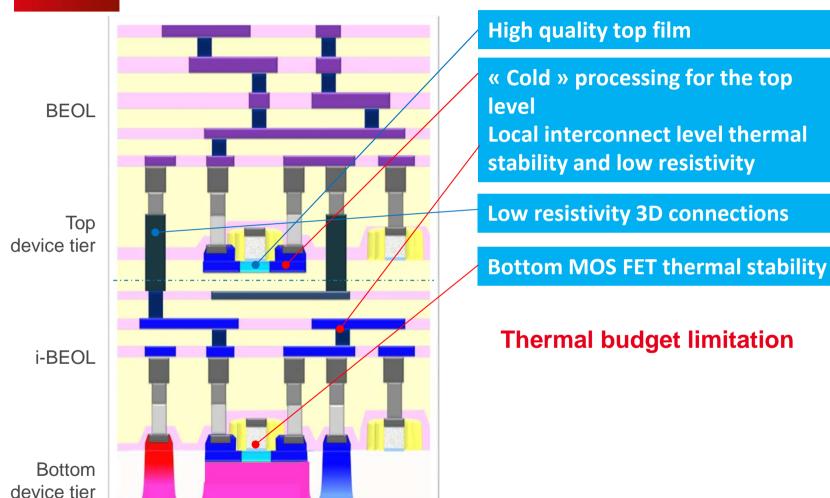
Enabling solution for:


- CMOS on CMOS as a scaling alternative
- CMOS on active matrix (LED, Imager, MEMS, ...)



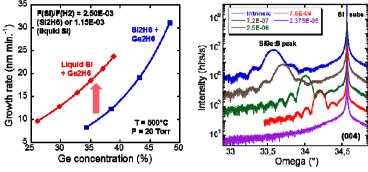
SEQUENTIAL STACKING (COOLCUBE™): AN ECONOMICALLY VIABLE ALTERNATIVE TO SLOW DOWN SCALING AND DEVELOP NEW ARCHITECTURES

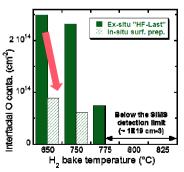
Neuromorphic computing


Economics:

- 28nm node
- 40mm² chip
- 5kW/W production (or equivalent surface)

→ 100M\$ saving / year (compared to a 28FDSOI) thanks to the additional number of dies provided by the CoolCube™ solution


MAIN COOLCUBE™ INTEGRATION CHALLENGES

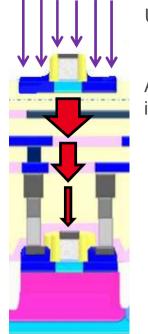


- Si & SiGe:(B) epitaxy from 450 to 550℃
 - Investigation Liquid silicon as a new precursor
 - ⇒ better growth rates vs Si₂H₆ / good crystallinity and surface roughness
 - ⇒ Selective epitaxy under development

V. Mazzocchi et al, ECS 2018

- Surface preparation for low temp epitaxy
 - in-situ surface preparation vs standard HF last process
 - ⇒ Strong impact on interface oxygen conta. with reduced bake temperature

JM Hartmann et al, ECS 2018



ALTERNATIVE: SELECTIVE SURFACE ANNEALING

Thermal budget limitation originates from the bottom level, with techniques heating the whole wafer

→ Ultraviolet Nanosecond Laser Annealing

UV pulse

Absorption in Si

Limited heat diffusion

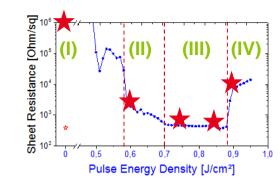
LASSE-SCREEN LT-3100 platform for UV-NLA

- UV radiation (308nm): absorption length ~ top Si film thickness (5-20nm)
- Short pulse (< 200ns) : very limited heat diffusion

→ UV-NLA only heats the top transistor

Kerdiles ECS 2017

a-Si


c-Si

BOX

As-implanted

5nm

MICROSTRUCTURE BY TEM: As IMPL.

As-implanted: 4-5nm c-Si seed + 14-15nm a-Si

Regime II: Partial epitaxial regrowth

poly-Si c-Si 5nm BOX 0.60J/cm² defects c-Si 5nm BOX

Regime III: Fully monocrystalline, perfectly recrystallized

c-Si 5nm BOX 0.85J/cm²

5nm

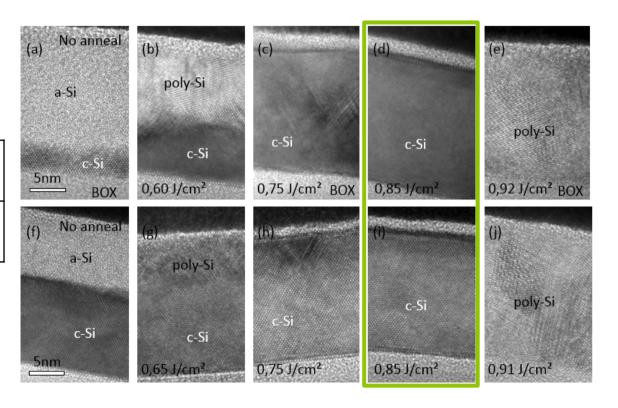
Regime (IV): Poly-Si. SOI layer full melt.

0.75J/cm²

0.92J/cm²

poly-Si

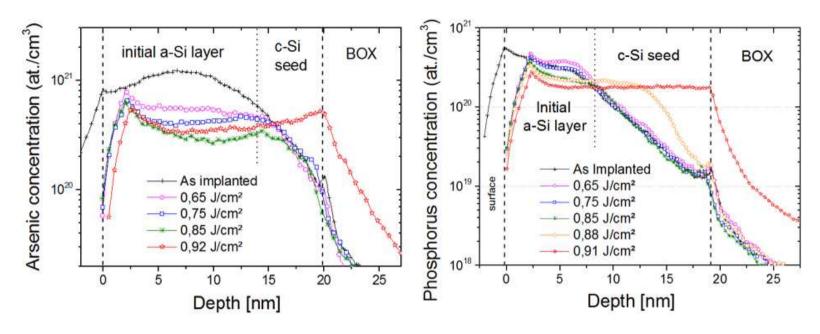
BOX



As & P IMPLANTED SOI: SAME BEHAVIOR UPON UV-NLA

As	14-15 nm a-Si 4-5 nm c-Si
Р	8 nm a-Si 12 nm c-Si

[Acosta et al, IIT 2016]



- Despite different initial amorphizations, similar Rs behavior & TEM observations for the different dopants.
- → Common process window for dopant activation by UV-NLA

- Regime II: Clear dopant redistribution due to the melting of the former a-Si layer
- Regime III: Box-like profile extends within the c-Si seed layer
- Regime IV: full SOI melting confirmed

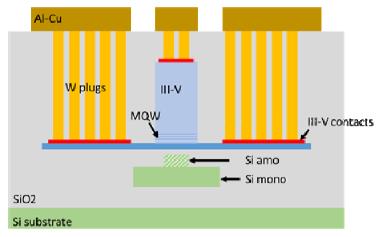
→ PAI strategy would allow accurate dopant profile control with a large UV-NLA process window

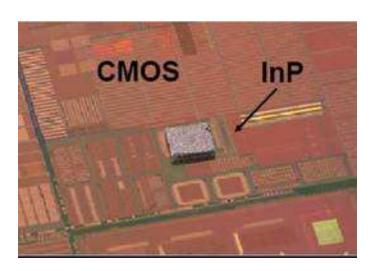
Kerdiles ECS 2017

Challenges in Materials and Processes for new applications

2 examples to illustrate the way Leti works:

- More Moore: CoolCube™
 How to do sequential stacking for advanced CMOS with molecular bonding
- and « low Temperature » process bricks
- More Than Moore : Photonic

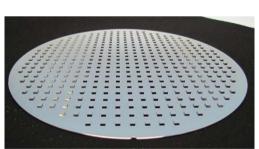

How to manipulate « exotic materials » <u>like silicon</u> and in <u>large diameter</u> substrates


HYBRID III-V/SI LASER – TARGETED PROCESS

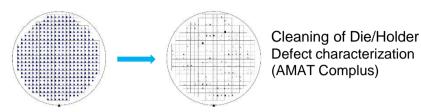
Challenges:

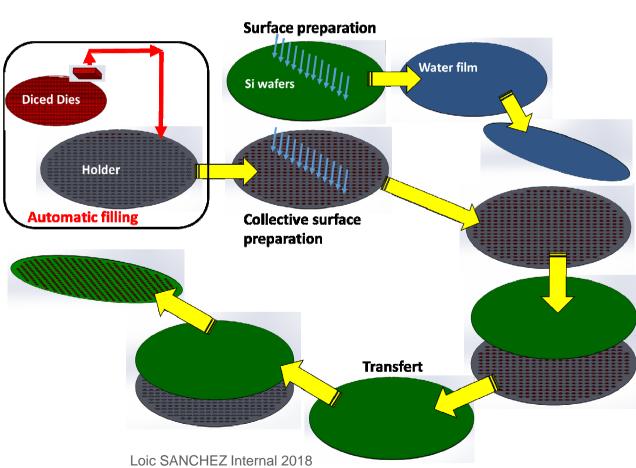
- Co-integrate Active (III-V laser) and passive (Si based) components → C2W molecular bonding
- 300mm Si wafers
- CMOS compatible process :
 - No noble metals
 - Conventional patterning steps (no lift off, ...)
- Multi-metal level BEOL

Szelag SPIE 2018

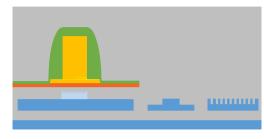


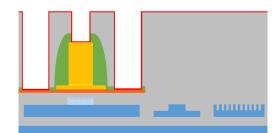
COLLECTIVE DIRECT BONDING OF INP DIES ON SI WAFERS



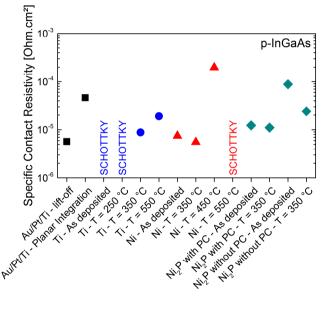

Critical steps:

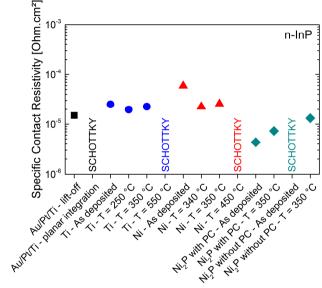
- Holder fabrication & filling
- Collective surface prep. & characterization
- Transfert by direct bonding & characterization
- Grinding and/or Wet etching of InP substrates


Bonded dies on Si (3*3mm dies positionned @ +/-150µm)



CMOS COMPATIBLE CONTACTS ON III-V MATERIALS





Szelag SPIE 2018

Integration constraint & process cost

→ use the same contact for n-InP and p-InGaAs

NiP with 350℃ annealing for example

- same contact for n-InP and p-InGaAs (Rc < 10^E5 Ohm/cm²)
- full CMOS compatible

Challenges in Materials and Processes for new applications

2 examples to illustrate the way Leti works:

- More Moore: CoolCube™
- How to do sequential stacking for advanced CMOS with <u>molecular bonding</u> and « <u>low Temperature</u> » process bricks
- More Than Moore: Photonic

How to manipulate « exotic materials » <u>like silicon</u> and in <u>large diameter</u> substrates

A WORLDWILDE ECOSYSTEM ON COMPONENTS

Leti works with a worldwide ecosystem of equipment and material manufacturers to propose solutions based on new architectures (III-V silicon photonic, Cool Cube) and new material integration (III-V, GaN, 2D materials) for IDM, foundries and integrators.

For us, innovative and collective bricks, silicon like process and the use of large diameter substrates are key parameters for early industry adoption

Thank you for your attention